Methylcellulose Based Thermally Reversible Hydrogel System for Tissue Engineering Applications
نویسندگان
چکیده
The thermoresponsive behavior of a Methylcellulose (MC) polymer was systematically investigated to determine its usability in constructing MC based hydrogel systems in cell sheet engineering applications. Solution-gel analyses were made to study the effects of polymer concentration, molecular weight and dissolved salts on the gelation of three commercially available MCs using differential scanning calorimeter and rheology. For investigation of the hydrogel stability and fluid uptake capacity, swelling and degradation experiments were performed with the hydrogel system exposed to cell culture solutions at incubation temperature for several days. From these experiments, the optimal composition of MC-water-salt that was able to produce stable hydrogels at or above 32 °C, was found to be 12% to 16% of MC (Mol. wt. of 15,000) in water with 0.5× PBS (~150mOsm). This stable hydrogel system was then evaluated for a week for its efficacy to support the adhesion and growth of specific cells in culture; in our case the stromal/stem cells derived from human adipose tissue derived stem cells (ASCs). The results indicated that the addition (evenly spread) of ~200 µL of 2 mg/mL bovine collagen type -I (pH adjusted to 7.5) over the MC hydrogel surface at 37 °C is required to improve the ASC adhesion and proliferation. Upon confluence, a continuous monolayer ASC sheet was formed on the surface of the hydrogel system and an intact cell sheet with preserved cell-cell and cell-extracellular matrix was spontaneously and gradually detached when the grown cell sheet was removed from the incubator and exposed to room temperature (~30 °C) within minutes.
منابع مشابه
Agarose and methylcellulose hydrogel blends for nerve regeneration applications.
Trauma sustained to the central nervous system is a debilitating problem for thousands of people worldwide. Neuronal regeneration within the central nervous system is hindered by several factors, making a multi-faceted approach necessary. Two factors contributing to injury are the irregular geometry of injured sites and the absence of tissue to hold potential nerve guides and drug therapies. Bi...
متن کاملHydrogel/electrospun fiber composites influence neural stem/progenitor cell fate
Cell replacement therapy with multi-potent neural stem/progenitor cells (NSPCs) into the injured spinal cord is limited by poor survival and host tissue integration. An injectable and biocompatible polymeric cell delivery system serves as a promising strategy to facilitate cell delivery, promote cell survival and direct cell behaviour. We developed and characterized the use of a physical hydrog...
متن کاملBioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel
Autologous chondrocyte implantation for cartilage repair represents a challenge because strongly limited by chondrocytes' poor expansion capacity in vitro. Mesenchymal stem cells (MSCs) can differentiate into chondrocytes, while mechanical loading has been proposed as alternative strategy to induce chondrogenesis excluding the use of exogenous factors. Moreover, MSC supporting material selectio...
متن کاملLocal Delivery of Neurotrophin-3 and Anti-NogoA Promotes Repair After Spinal Cord Injury.
Tissue and functional repair after spinal cord injury (SCI) continue to elude researchers. Neurotrophin-3 (NT-3) and anti-NogoA have been shown to promote axonal regeneration in animal models of SCI; however, localized and sustained delivery to the central nervous system (CNS) remains a critical challenge for these and other macromolecular therapeutics. An injectable drug delivery system (DDS) ...
متن کاملPreparation and in vitro Bactericidal and Fungicidal Efficiency of NanoSilver/Methylcellulose Hydrogel
In this work we describe the preparation of NanoSilver/methylcellulose hydrogel containing silver nanoparticles (NPs) for topical bactericidal applications. Highly concentrated dispersion of silver NPs as high as of 5g/L of silver with diameter of 10nm was prepared by reduction of AgNO3 via strong reducing agent NaBH4. Silver NPs were stabilized by addition of sodium polyacrylate in order to pr...
متن کامل